Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Virus Evol ; 9(1): veac121, 2023.
Article in English | MEDLINE | ID: covidwho-2326490

ABSTRACT

The first case of coronavirus disease 2019 (COVID-19) in Cambodia was confirmed on 27 January 2020 in a traveller from Wuhan. Cambodia subsequently implemented strict travel restrictions, and although intermittent cases were reported during the first year of the COVID-19 pandemic, no apparent widespread community transmission was detected. Investigating the routes of severe acute respiratory coronavirus 2 (SARS-CoV-2) introduction into the country was critical for evaluating the implementation of public health interventions and assessing the effectiveness of social control measures. Genomic sequencing technologies have enabled rapid detection and monitoring of emerging variants of SARS-CoV-2. Here, we detected 478 confirmed COVID-19 cases in Cambodia between 27 January 2020 and 14 February 2021, 81.3 per cent in imported cases. Among them, fifty-four SARS-CoV-2 genomes were sequenced and analysed along with representative global lineages. Despite the low number of confirmed cases, we found a high diversity of Cambodian viruses that belonged to at least seventeen distinct PANGO lineages. Phylogenetic inference of SARS-CoV-2 revealed that the genetic diversity of Cambodian viruses resulted from multiple independent introductions from diverse regions, predominantly, Eastern Asia, Europe, and Southeast Asia. Most cases were quickly isolated, limiting community spread, although there was an A.23.1 variant cluster in Phnom Penh in November 2020 that resulted in a small-scale local transmission. The overall low incidence of COVID-19 infections suggests that Cambodia's early containment strategies, including travel restrictions, aggressive testing and strict quarantine measures, were effective in preventing large community outbreaks of COVID-19.

2.
Emerg Microbes Infect ; 12(1): 2208678, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2297250

ABSTRACT

Prospective cohort study to investigate the potential exposure to the Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) following Hajj pilgrims is still very limited. Here, we report the antibody seroconversion study results obtained from successive three years cohort studies (2016-2018) involving the Malaysian Hajj pilgrims returning from the Middle East. A cohort study of Hajj pilgrims from Malaysia enrolled 2,863 participants from 2016-2018, all of whom consented to provide paired blood samples for both pre- and post-Hajj travel to the Middle East. ELISAs and micro-neutralization assays were performed to detect the presence of MERS-CoV IgG antibodies. Sociodemographic data, symptoms experienced during Hajj, and history of exposure to camels or camel products were recorded using structured pre- and post-Hajj questionnaires. A 4-fold increase in anti-MERS-CoV IgG between paired pre-Hajj and post-Hajj serum samples in twelve participants was observed. None of the twelve ELISA-positive sera had detectable levels of virus-neutralizing antibodies. All reportedly had mild symptoms of respiratory symptoms at a certain point during the pilgrimage, implying mild or asymptomatic infections. No association between post-Hajj serum positivity and a history of exposure to camels or camel products was obtained. Findings from the study suggest that serologic conversion to MERS-CoV occurred in at least 0.6% of the Hajj pilgrims returning from the Middle East. Since all the seroconvertants had mild to no symptoms during the sampling period, it highlights the likelihood of occurrence of only low infectivity spillover infections among the Hajj pilgrims.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , Prospective Studies , Cohort Studies , Seroconversion , Middle East/epidemiology , Travel , Saudi Arabia/epidemiology
3.
Mil Med ; 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2189355

ABSTRACT

INTRODUCTION: We present a real-world experience of a U.S. Navy Hospital Ship deployed amid a global Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surge and the challenges of navigating policy while maintaining a mission-focused itinerary in an operational environment. MATERIALS AND METHODS: We performed a chart review of SARS-CoV-2 cases from April 18 to September 20, 2022, within a closed population of fully vaccinated adults onboard the USNS Mercy (T-AH 19) during the 5-month 2022 Pacific Partnership mission to Guam, Vietnam, Palau, Philippines, and the Solomon Islands. RESULTS: There were 123 total SARS-CoV-2 cases over the course of the mission, constituting 16.6% of the total crew (123/741). No more than 14 service members were actively infected at a given time (1.9%, 14/741). The average number of active cases at any given time was 0.8 (1.9 SD, 0.1% [0.8/741]), and just 14 of these were shipboard secondary cases. No significant operational requirements of the ship were impacted by infection-related manning shortages, there were no hospitalizations, and all infected members experienced full recovery. CONCLUSIONS: Despite ongoing cases throughout the majority of the mission, a healthy immunized crew experienced no serious cases and minimal impact on operational effectiveness.

4.
Sci Rep ; 12(1): 939, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634211

ABSTRACT

With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 * [OR - 1]/OR) (OR = odds ratio). Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 173 (88%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


Subject(s)
Hospitalization , RNA Virus Infections , RNA Viruses/genetics , Respiratory Tract Infections , Reverse Transcriptase Polymerase Chain Reaction , Acute Disease , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Laos/epidemiology , Male , RNA Virus Infections/diagnosis , RNA Virus Infections/epidemiology , RNA Virus Infections/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Sex Factors
5.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1015423

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), presents a challenge to laboratorians and healthcare workers around the world. Handling of biological samples from individuals infected with the SARS-CoV-2 virus requires strict biosafety measures. Within the laboratory, non-propagative work with samples containing the virus requires, at minimum, Biosafety Level-2 (BSL-2) techniques and facilities. Therefore, handling of SARS-CoV-2 samples remains a major concern in areas and conditions where biosafety for specimen handling is difficult to maintain, such as in rural laboratories or austere field testing sites. Inactivation through physical or chemical means can reduce the risk of handling live virus and increase testing ability especially in low-resource settings due to easier and faster sample processing. Herein we assess several chemical and physical inactivation techniques employed against SARS-CoV-2 isolates from Cambodia. This data demonstrates that all chemical (AVL, inactivating sample buffer and formaldehyde) and heat-treatment (56 and 98 °C) methods tested completely inactivated viral loads of up to 5 log10.


Subject(s)
COVID-19/virology , Containment of Biohazards , SARS-CoV-2 , Specimen Handling , Virus Inactivation , Animals , Cambodia , Cells, Cultured , Chlorocebus aethiops , Hot Temperature , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load/drug effects , Viral Load/statistics & numerical data , Virus Inactivation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL